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ABSTRACT

A model is developed for the failure time of a bundle of fibers
subjected to a constant load. At any time, all surviving fibers share
the bundle load equally while all failed fibers support no load. The
bundle may collapse immediately or fibers may fail randomly in time,
possibly more than one at a time. The failure time of the bundle is
the failure time of the last surviving fiber. For a single fiber, the
c.d.f. for the failure time is assumed to be a specific functional of an
arbitrary load history. The model is developed using a Quantile process
approach. In the most important case the failure time of the bundle
is shown to be asymptotically normal with known parameters. The bundle
failure model has the features of both static strength and fatigue
failure of earlier analyses, and thus is more realistic than earlier

models.
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1. INTRODUCTION

Consider a bundle of n fibers to which we apply a nonnegative, time
dependent load 2.8(1;), t > 0. As time passes, fibers fail in a random manner
that depends on their individual load histories. We let Tl L e £ '1‘n be the
oriared failure times of the n fibers and designate T as the bundle failure time.

Bundle loading assumptions. The bundle load program is defined as

2(t) = !,S(t)/n, t > 0, but the actual load that each fiber carries may differ
from 2(t) because the load on a failed fiber is shifted to its survivors

according to a specified rule. The equal load sharing rule is assumed in this

study wherein all surviving fibers at time t share the load equally. Thus, we

define the actual fiber load program Ln as the random process

2(t)/(1~-i/n) for Ti <t< Ti+l and i=0,...,n-1 ,
(1.3] Ln(t) =

0 for Pl i<t o
o

vhere T, = 0. Each fiber is subjected to Ln(t) up to its time of failure. A
large portion of this study will be devoted to studying bundle failure under
the constant load program 21(1:) =L, t > 0 where L is a positive constant.
Generally, we will assume 2(t), t > 0 to be continuous.

Assumptions on single fiber failure. We assume that fibers are sampled

independently from a common source. Under the known arbitrary load program

A(t), t > 0 a single fiber has random failure time T with cumulative distribu-
tion function (c.d.f.) F(t|A), t > O which is a nonanticipating functional of
A. Though some results will be obtained for general F(tIA), most of the study

will involve the aspecific functional

(1.2) F(t|A) = sup {¥(A(1), /j k(A(s))as)} ,
0<T<t

it i




where k(x) and ¥(x,z) are functions with the following special properties.

The function k(x), x > 0 is assumwed to be continuous, increasing and

unbounded and to satisfy k(x) > 0 for x > 0. We call k(x) the breakdown rule. \

An example of practical interest is the power law breakdown rule
(1.3) k,(x) = P for x>0,
where p is a positive constant. Later, we further restrict the behavior of

k(x) in order to obtain asymptotic results for bundle failure.

The function ¥(x,z) is called the shape function and we assume it to be

increasing and jointly continuous in x > 0 and z > 0, and to satisfy ¥(0,0) = 0.

p
b Also,we assume ¥(x,z) < 1 for x > 0 and z > 0 and lim Y¥(x,z) =1 for all z > 0
: Tt
or lim ¥(x,2) = 1 for all x > 0. Later we further restrict the behavior of Yy
Z+0

in order to obtain asymptotic results for bundle failure. An example of Y of

practical interest is

(1.4) Wl(x,z) = l—exp{-(xr +2)%} for x >0 and z >0,

where r and s are positive constants.

In recent models for the fatigue failure of materials, c.d.f.'s for the

k- failure time arise which are of the form of (1.2). In fact (1.2) with (1.3)
8 and (1.k4) is a‘specific example. In such models,fatigue cracks grow in length
within the material and their growth depends on the load through the integral

contained in (1.2). The strength of the material depends on the length of the

longest crack and failure occurs when the load exceeds the strength or the strength
decreases below the load for the first time. For periods where the load is
decreasing, material strength mey decrease less severely so that failure will not
occur during that period. Thus, the "sup" in (1.2) arises as a result of these

situations and is necessary to ensure that F(tlk) is increasing in t.
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We will speak of the distribution for the initial strength of the fiber

(1.5) F(x) = ¥(x,0), x>0 .

Under the load program £,(t) = L, t > 0 observe that F(L) is the probability
that the fiber fails at time zero or alternatively that its initial strength

is less than or equal to the constant L. When ¥ = Wl, then F(x) is the Weibull
distribution. Generally F(x), x > 0 may not be a proper c.d.f. We will also

speak of the distribution for the time to failure of the fiber in static fatigue

(1.6) F(tlzl) = ¥(L,k(L)t) for t > 0.

Note that F(Olll) = F(L) and that there may be a positive probability that the

fiber fails immediately upon application of the load L. Under our assumptions,

either F(x) or F(tlll) is a proper c.d.f.
Our interest in this paper will be primarily in load programs which are

increasing. In such cases we may drop the "sup" in (1.2) and teke T = t. The

integral in (1.2), which we call the fatigue integral, provides for the time

dependent fatigue of the fiber, with k influencing the rate as the load changes.
It may be shown that (1.2) yields a probabilistic version of the well-known

Miner's fatigue rule. A main feature of (1.2) is that F(t|)) is sensitive to

the instantaneous value of the load A. Consequently jumps in A(t) may result in

F-q | corresponding jumps in F. Note that the function Y governs the shape of the

distribution for initial strength F(x) and of the distribution for time to

4
; failure in static fatigue F(tILl). Also ¥ governs the interactive influence on
g F of the instantaneous value of the load and of the fatigue integral. If ¥(x,z)

is a function only of x, the fibers are called classic fibers and do not fatigue

e

with time. Their strength distribution is F(x) which of course is time independent.
For example, classic fibers are obtained that have a Weibull distribution for

strength when y is deleted in (1.4).
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Previous bundle analysis. The model studied earlier by Phoenix (1978)

(under assumptions which were proposed by Coleman (1958)) is a special case of

the present model. Specifically, the shape function ¥(x,z) was considered to

be only a function of z. Consequently F(tIA) remained continuous in t under step
increases in A(t) (although the slope of F at such times often increased drastically).

Consequently fibers in the loaded bundle failed one-at-a-time, though generally

at an accelerating rate. But more important,the model was incompatible with the

classic (static) model for fiber bundle strength investigated in depth by Daniels
(1945) for which ¥(x,z) is only a function of x. For a classic bundle, a linearly
increasing load program £(t) may result in more than one fiber failure at some
time. This occurs because a shift of the load of a failed fiber to its survivors
may cause some of the survivors to fail also, as their strengths are exceeded.

At some time the classic bundle will collapse as the remaining survivors fail
simultaneously.

Our bundle failure model has the features of the Daniels classic model and
the Coleman time dependent model. A typical evolution of the bundle failure
process under the constant load program 2l(t), t > 0 will be that some fraction
(perhaps all) of the fibers will fail at time zero upon application of the load
(Daniels bundle feature). As time passes single fibers will fail (Coleman feature)
perhaps triggering instantaneously one or more additional failures as a result
of the load jumps (Daniels feature). The result is that ties will occur among
the fiber failure times. At some time, the remaining fibers will fail simultan-
eously as the bundle collapses catastrophically (Daniels feature).

In this paper we formulate a model of the bundle failure process whose
statistical properties will be equivalent to those of the bundle as originally

described. This model will be called the gquantile model because the time to

failure of the bundle Tn will be expressed in terms of the uniform guantile

process. In fact,for the constant bundle load program ll(t) we will obtain T

i
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for i =1, ..., n as a functional of the uniform guantile process. Under broad
assumptions we will demonstrate asymptotic normality for the bundle failure
time T using techniques of analysis adapted from Shorack (1972a and b).

An example of engineering relevance will be discussed to highlight the

main differences between the model of Phoenix (1977) and the more general model
considered here. But first we consider on a heuristic basis some examples of
infinite (n*») bundles. These will illustrate several of the features of the

bundle failure process and will provide motivation for the exact and asymptotic

analyses which follow.
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2. INFINITE BUNDLE ANALYSIS

Jonsider an infinitely large bundle (n»»), which (8 subjeotead tu Lhe vonstant
load program R.l(t)_ =L, t > 0. (The actual load on the bundle is ls(t) = nL
which is,of course,infinitely large). Upon application of the load L, at time
zero, the fraction o F(L) immediately fails being unable to support L. (Recall
that F(x) given by (1.5) is the initial strength distribution of the fiber.)
Immediately,the load on each surviving fiber jumps to L/ (l-yl) and the fraction
of failed fibers increases instanteneously to y, = F(L/ (1—yl)). This process
continues at time zero and after the mtll round, the fraction of failed fibers is
e F(L/ (1—ym_l)). In Figure 1 we give an example and illustrate four possibili-

*
ties associated with the load levels L L2, L, and L respectively. For

32 3
L = Ll we depict the generation of the sequence ¥y y2, ... and note that

ym -+ y{ <1 as m+* « so that y{ becomes the stable fraction of fibers that fail

at time zero. On the other hand, if L = L2 we have ¥y > 1 as m »> © so that all

L3 no fibers fail and Yy = 0 for all

* M
m. The critical value of L is the load L for which the curve F(L /(1-y))

the fibers fail at time zero. But for L

touches (at y = y*) but does not cross the curve y. Thus for loads exceeding L*

the bundle collapses. Now Daniels (1945) demonstrated that under reasonable

assumptions on F(x) the strength of a classic bundle is asymptotically normally
distributed with mean u_ = sup{x(1-F(x)); x > 0} and variance which decreases

as 1/n (see Phoenix and Taylor (1973)). Taking x* as the point (assumed unique) :
where the function x(1-F(x)), x > 0 achieves its maximum we find indeed that .
L* =u ., end x* = L*/ (l-y*). Also the fact that the variance decreases as n_

supports our heuristic approach. Thus,we have the following situation at time

zero: We have L. > 0 as the smallest value of L for which F(L/(1-y)) > y for

#* *
all y, if this value exists or take L = ® otherwise. We call L the initial

collapse load for the infinite bundle. We have y{ €[0,1] as the smallest value

of y > 0 for which F(L/(1-y)) = y and call y{ the initial fraction of failed
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fibers in the infinite bundle. As an example if ¥ = ‘1’1 we find that F(x) is

the two parameter Weibull c.d.f. with shape parameter rs. We obtain

(2.1) L' - (rSIl/(rs)exp{-ll(rsl}

and y: as the smallest value of y > O satisfying

(2.2) log(%) = (i-L—-)rs
1~y -y
when L < L*,a.nd yi = 1 otherwise.
Let y(t), t > O be the fraction of failed fibers at time t. Since failed
fibers cannot repair themselves, y(t) will be increasing in t > 0 and will
satisfy y(0) = y{. If y(t) becomes unity for finite t, we define the bundle

failure time tw(l) (for infinite bundles) as
(2.3) t (1) = inf{t > 0; y(t) = 1} .

Otherwise tm(l) is taken as infinity. As time passes, equilibrium is maintained

and we argue that y(t), t > 0 must satisfy the integral equation
(2.4) y(t) = ¥(1/(1-y(8)), [ k(@/(1-y()) ar)

where for all t > 0, y(t) is the smallest possible value. Note that each fiber
of the bundle is subjected to L/(1-y(t)) up to its time of failure and by (1.2)
the right hand side of (2.4) will be the fraction of fibers that has failed up
to time t. For t_(1) to be finite when 0 < L < L* we require ¥Y(L,z) + 1 as z + «

and Y and « together will be required to have special properties.

5T BN T T TN L TN IR
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Given 0 < y < 1 and x > 0 let W‘l(x,y) be the largest value of z satisfying

¥(x,z) = y, if such a value exists and let W-l(x,y) equal zero otherwise. Note
that ¥(x,z) may be viewed as a c.d.f. in z > 0 given x > O and that W-l(x,y) is

its inverse in y. Observe also that ?-l(x,y) is increasing in 0 < y < 1, is

decreasing in x > 0, and is jointly continuous in both variables. For example

when Y = Wl we have

i
b

S ls r 1
— - < < e
[log(l_y)] X for 0 < y<1land 0 < x < [log(l_ )

(2.5)  ¥7(x,y) =

(3 otherwise.

*
Proceeding with the solution to (2.4) for 0 < L < L we rearrange (2.4) to

obtain

(2.6) I Ky = el (t))

where

(2.7) g(y) = Y"1 (L/(1y),y) for 0<y<1,

and (2.6) holds for some range of t. Now the left hand side of (2.6) is strictly
increasing in t > 0 by the nonnegativity aessumption of k, but the behavior of
g(y) is more complex. Although W'l(x,y) is increasing in y, it is decreasing in
x. But we also see that g(y) > 0 for 0 < y < 1 if and only if F(L/(1-y)) < y.
Thus for 0 < ¥y <.y§ we must have g(y) = 0, For y Z_yi we find that g(y) is not
necescarily increasing. We restrict the behavior of g(y) as follows: Assume

# # #

*
that given 0 < L < L there exist points 0 <¥y £¥, £¥5 £1 such that gly) is

3—
is zero on [O,y{), is strictly increasing on [yi, yg), is strictly decreasing on
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[yg, yg) and is zero on [yg, 1). Possibly y{ = 0 and possibly yg =1, Also

yz may be zero or one as well. These restrictions on the behavior of gly)

turn out to be mild from a practical point of view. Returning to (2.6) we may

write

(2.8) at = ¢(y(t))dg(y(t)) for y{ 6 yz

where *
(2.9) ¢(y) = 1/x(L/(1-y)) for 0<y<1, |

and t = s(y{)¢(y{) at y = yf- (When yi = 0 we may have g(yi) >0 but for y{1>0

we have g(y{) = 0.) Henceforth we restrict ¢ to being right continuous on [0,1). :

Denoting t_(y) as the solution, we integrate (2.8) to obtain

(2.10) 6,0 = /7 0(2)aa(z) + er)ow]) for W<y <),

N1
vhich is B relationship between time t and the fraction of failed fibers y up to
yg . The significance of yg < 1 is that when y(t) reaches yg, the bundle collapses

instantaneously as y(t) jumps to one. We call yg the collapse fraction. This is

seen from the fact that the right hand side of (2.6) can grow no further while
the left hand side continues to grow. Indeed (2.6) is no longer applicable and
y(t) = 1 is the only solution to (2.4) beyond this time. Now for L = L. we note
that g(y) = 0 for 0 < y < 1. Thus the fraction of failed fibers y(t) becomes y“
at t = 0 and is one for t > 0. Hence,

#

y
S ; ¢(y)ag(y) + ¢(yi)s(y{) for 0<L<L,
N

(2.11) t (1) =

*
0 for L < L.




Letting g#(y) = sup{g(T); 0 £ T < y} we integrate by parts in (2.10) and

obtain by the above discussion the time to failure of the fraction y
( st
2.12) t (y) = - 0 & (min(z,y))d¢(z) for 0<L and O<y< 1,

where we use the fact that ¢(y) » 0 as y + 1 (by our assumptions on k). Note that

t (y) = t_(1) for yg Ly £ 1. Before discussing an example,we point out that

tm(l) will be found to be the mean of the asymptotic distribution of the bundle

failure time T when n grows large. Additional restrictions that we impose on
‘}’-l, ¢ and g will be mild. We also point out that t_(1) is finite if g(y) is
bounded since ¢(y) is always bounded. On the other hand if g(y) grows unbounded
in y (so that yg = 1) ve see from (2.11) that t_(1) may not exist. Later,
reasonable restrictions on ¢ and g will foreclose this possibility. Note as well

that in the model of Phoenix (1978) ¥(x,z) = ¥(z),a function only of z. Thus,

gly) = iF-l(y) the inverse of ¥, the initial failed fraction y{ is zero, the

collapse fraction yg is one, and L* = o,

In Figure 2 we have illustrated some features of ‘P:-Ll(x,y) given by (2.5).
Above the line x = [log(l/(l-y))]1/(rs),which is the inverse x = 'F"-l(y) of the
initial strength distribution F(x), we see that ‘l’;_l(x,y) is zero. Also we see
that ‘!’;]’(x,y) is Jointly continuous in both x > 0 and 0 < y < 1. Now g(y) is

2 , »
‘l‘ll(x,y) evaluated along the line x = L/(1-y). We compute for 0 < L < L that

0for0§y<y’{ and y§5y<l,

(2.13) gly) =

l)]l/s_(_L_)r # #

—— < <
[los(l_y 1y for ¥ Sy <vy3,




o

Lt /.

»
where L was given before by (2.1) and y: and y’; are the smallest and largest

solutions respectively to (2.2). The value L‘ and the associated tangent point
y are easily visualized and for L > L we see S(V) =0for 0<y<1l. For
0<L < L the function g (y) is

#

gly) for 0<y<y,

(2.14) s#(y) =

# #
gly,) for y,<y<1

where yg is the positive solution to
1l-s

e
(2.15) [108( )] =rs(ﬁ) .

# # #

* *
Alsog#(y)=0forLz_L . Evidently for 0 < L< L wehave0<y1<y2<y3<l,

*
and the behavior of g(y) is typical. Thus,we find that if L > L the bundle fails

*
immediately. But if 0 < L < L ,a positive fraction yi of fibers fails at time

zero. As time passes, fibers fail smoothly until the fraction yg has failed when

the bundle suddenly collapses. For this example, if we assume the power law

breakdown rule Ky (x) = xP , we find that

(2.16) ¢(y) = LP(1-y)° for 0<y<1.

Clearly t (1) as computed by (2.11) or (2.12) is finite for all p > 0. But if

the direct load sensitivity feature is removed as in Phoenix (1978) and ‘l’l is

)l/s for
0 <y <1 and essentially the first term in (2.13) is retained with y{ = 0 and

yg = yg = 1. Again t_ (1) is finite for all p > O though the asymptotic distri-

replaced by l-exp{-z°} for =z >0, we find g(y) = g#(y) = log(--li'—y

bution results there required p > 1. Evidently the load sensitivity feature

»
will reduce the magnitude of t_(1) substantially when L nears L .

&
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In the foregoing heuristic analysis we have introduced several quantities,
and established some important features of bundle failure through the use of an
example. Later we investigate the asymptotic distribution of Tn’ the bundle
failure time,and these as well as other quantities will arise. Further assump-
tions will be made along the lines of those made heretofore. These assumptions
are rather innocuous in applications yet the proofs are kept as straightforward
as is practicable. Certainly (2.12) holds for g for which there are more than
two intersections of the functions F(L/(1l-y))and y on [0,1). However, such

situations are rare in applications and only serve to complicate the proofs.




R, T e VA

e e e AR

SRS N

13

3. THE QUANTILE MODEL OF BUNDLE FAILURE.

We formulate a model of bundle failure whose statistical properties will be
equivalent to those of the bundle as originally described. With the n fibers we
associate the ordered sample V, < ... <V from the uniform distribution on [0,1].

Associated with the sample is the random process

V1 for (i-1)/n <y < i/n and i=1,...,n,
et 3
(3-1) rn (Y) e

Vn for y = 1,

and the uniform quantile process

(3.2) v(y)=+n (rgl(y)—y) for 0<y<1.

We assume the bundle load program 2(t), t > 0 to be nonnegative and contin-
uous. We recall that F(t]k), t > 0 was the c.d.f. of the time to failure for a
single fiber given an arbitrary load history A(t), t > 0. We also recall that
F(t|A) was a nonanticipating functional of A.

Let L _(s) = 2(s) for s > 0 and let
n,0 -

2(s)/(1-(J-1)/n) for TJ-.‘L <s< 'I.'J and jJ=1l,...,1

(3.3) Ln,i(S) =

2(s)/(1-i/n) for T:l

< s.

| '
Now set To = 0 and generate the quantile model failure times T]'_ £ 0o £ Tn
by
1 '
(3.4) T, = inf{t 2 T, ;3 F(tan’i_l) 2V}




14

'
when such a value exists and set Ti = o otherwise. Thus,we have the failure
] '
times T, < ... £ T in terms of the uniform order statistics Vl £eea BN

it e g BTSN

] ]
and later we will see that the random vector (Tl"”’Tn) and the random vector
(T)5...»T ) have the same distribution.
When £ is the constant load program ll(t) =L, t >0 and F(t|A) is given
(] ]
r‘ by (1.2), we may express T s+++,T explicitly in terms of Viseeos
the basis for studying the asymptotic behavior of the bundle failure time for

Vn. This forms

]
this important case. We have '1‘0 =0,

(3.5) mo=dnfe 20 WL (8, S5 k(L (8)))as > V)

' ]
where L replaces %(s) in (3.3) and Ln g L. By our assumptions Tl S v s Tn
. b
L-' : are finite when Vl S S Vn < 1. We restrict our attention to the fatigue
1

case where ¥(x,z) + 1 as z - ©, and assume for technical simplicity that ¥(x,z)

: 3 is strictly increasing in z > 0. Thus given 0 < y < 1 and x>0 we now have
E | ‘l’-l(x,y) as the value z > 0 satisfying ¥(x,z) = y when such a value exists, and

‘l’-l(x,y) = 0 otherwise. Thus, ‘l’_l is nonnegative. Now let

(3.6) W, = v~ Y(nL/(n-1+1), v,) for i=1,...,n

= and associate with the Wi's the random process

wi for (i-1)/n <y < i/n and i=1,...,n,
(3.7) W (y) =

wn for y = 1.

Note that Wn(y) is nonnegative on [0,1]. Let

|
{
¢ |
5
|
1
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(i-1)/n for (i-1)/n < y < i/n and i=1,...,n
(3.8) Y, br) =

(n=1)/n for y = 1

and observe that

(3.9) W (y) = YL/ (=Y (9)), ToH)) for 0 <y < 1.
Of major importance ié the random process

(3.10) Wz(y) = sup{W (1); 0 < T <y} for 0<y<1.

Note that Wz(y) may differ from Wn(y) since the latter is not necessarily increa-

| !
sing in y. We may express the failure times Tl""’Tn in terms of Wﬁ. Specifi-
cally, we may write (3.5) as

1

(15 <(L)T, + k(al/(n-1))(T, - T,

(3.11) T = inf{t > T y

s )

T K(nL/(n—i+l))(t-T;_l) 2 W}

L L
for i=1,...,n. Inspecting (3.11) we see that ¥ = Ti-l

W, > m(wd; J=0,...,i-1) where Wo Z0andi=1,...,n. Hence we may write

k(w)r, = wl(0) ana

> 0 if and only if

(3.12) c(al/ (n-1+1))(2; - 7, 1) = WH((-1)/m) - WE((1-2)/m)
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for i=1,...,n. Now recall the function ¢(y) = 1/k(L/(1~y)) on [0,1) where L > 0,
and assume for technical simplicity that its derivative ¢' exists on (0,1). Thus,

we combine (3.12) for i=l,...,n to yield
(3.13) r, = D2 @ (2)az + o021 mwE((2-1)/m).

i

Hence, we introduce
(3.14) T () = -S3 ¢' ()W (sny)as.
where sAt = min(s,t). Then
1) ]
(3.15) Iy . Tn(y) for (i-1)/n <y < i/n and i=1,...,n,

' ] '
since ¢(y) > 0 as y > 1. Also,we see that g - Tn(l) so that ‘I‘n(l) will be the

bundle failure time . Equation (3.14) serves as the starting point for deter-

mining the as totic distribution of the bundle failure time and of the time to
mining the asympt o1 &0

1
failure of a given fraction y of fibers in the bundle which will be T ().

Associated with the processes Wn and Wﬁ are the functions

(3.16) g, (y) = ¥ H(L/(1-y_(y)),y) for 0 <y <1
and
(3.17) sﬁ(y) = sup{gn('r); 0<T< y}for0<y<1,

both of which are nonnegative. Two normalized processes play a central role,

These are

(3.18) z (y) = /n W (y) -g(y)} foro<y<1
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2 ’ and

.- (3.19) 2@ = & oty - iy ror0cy <.

Most important however, are
(3.20) tn(y) = -fg ¢'(s)g£(sAy)ds for 0 <y <1
and T (y) = /8 {T,(v) - ¢ ()}. By (3.14), (3.17), (3.19) and (3.20) ve have

(3.21)‘ T;(y) == fg ¢'(S)Z:(5Ay)ds for 0<y<1.

1}
The normalized bundle failure time Tn is defined as

(3.22) T; =vn {T; &= tn(l)} 2

By (3.1k4), (3.19), (3.20) and (3.21) we have T; = T;(l). The time to failure

a - Y
E - | of the yth fraction of fibers is defined as Tn(y) and in normalized fashion
]
; by T (¥).
Later we will determine the asymptotic distributions for the normslized
] 1
: bundle failure time 75(1) and for Th(y) the normalized time to failure of the

yth fraction of fibers. We will find three cases of interest depending on the

{J value of the applied load L relative to a critical collapse value. For the most
' ]

important case Tn(l) and Th(y) will be asymptotically normal. In the next

o -section we outline these cases and introduce several functions and random

processes which are important in the development. We also introduce the random

1] '
variables to which Tn(l) and Th(y) will converge in distribution.
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L. LIMITING RANDOM VARIABLES AND IMPORTANT FUNCTIONS
Earlier we introduced the functions Y and ‘F-l . Henceforth we view

‘l"l(x,y) as a nonnegative and continuous function on the set S which is
(4.1) S = {(x,y); x>0 and 0<y<1} .

We recall F(x) = ¥(x,0) for x > 0 as the c.d.f. for initial fiber strength. By
our assumptions F(x) is continuous and increasing with F(0) = 0, but ¥ may not be
a proper c.d.f. (F(x) = 0 for all x > 0 is possible). Now y = F(x) defines a

very important line in S since it divides S into

(4.2) % = {(x,y); x>0 and 0 < y < F(x)} ,
and

(4.3) St = {(x,y); x>0 and F(x) <y <1} .
We let

(4.4) §=s%s"

and see that S is Just S with the lines y = 0 and y = F(x) removed. We find

that ¥ is zero on S0 and is positive and strictly increasing in y on $.

In the infinite bundle analysis we introduced the function

(4.5) gly) = ‘l"l(L/(l-y).y) for 0 £ ¥y ¢ i




——————

T

The behavior of g is strongly influenced by the path in S that the line x = L/(1-y)
takes relative to the line y = F(x). Three cases of interest are possible depend-
*

ing on the value of the load L. Recall L as the load L for which the line

y = F(x) touches from below, (but does not cross) the line x = L/(1-y) at a single

A,

point in S. When such a value does not exist, we take L* = ow; We called L*
the initial collapse load.
Case I. (Applied load below initial collapse load). The line y = F(x) |

crosses the line x = L/(1-y) once or twice in S at distinct points, and elsewhere

*
the two lines do not touch. Thus L< L . We let y{ be the value of y at the

first crossing and let yg be the value of y at the second crossing if the second

crossing occurs and let yg = 1 otherwise. Note that y{ < yg, and only for y in
(y{, yg) does the line x = L/(1-y) lie in S*. Hence we have g(y) > 0 only on
(y#, y#). We assume that a point y# exists such that y# < y# < y#
1 3 2 1 Loyt
strictly increasing on [yi, yg) and is strictly decreasing on [yg, Y

the points 0 g_yi < yg 5_y§.§ 1 we have that g(y) is nonnegative and continuous

on [0,1), is zero on [O,yi) and on [yg,l), is strictly increasing on [y{, yg)
#
)

and g(y) is
&

. Thus for

and is strictly decreasing on [yg, y

Case II. (Applied load equals critical collapse load). The line y = F(x)
touches the line x = L/(1-y) at a single point in S. We let yg be the point y
of touching and we assume 0 < yg < 1. For this case we naturally take y{ = yg = yg

»
and have L as the wvalue of L. Note that g(y) = 0 for [0,1).

Case III. (Applied load exceeds critical collapse load). The lines
y = F(x) and x = L/(1-y) do not cross (or touch) in S. Thus g(y) = 0 on [0,1)
# | A »
and we set ¥y = ¥, = y3 = 1. We must have L > L .
»
Given ¥, if L = o, we have Case I for all L > 0. For some ¥, it is

possible for more than two crossings of y = F(x) and x = L/(1-y) to occur. For

simplicity we ignore cases arising from this situation though extension of the

results to these is straightforward. We also ignore Case II but with yg = 0.
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Cases I to III cover nearly all situations of practical importance. ]

Some important functions. Associated with g are the functions

(4.6) g’ (y) = suplg(1); 0 % 165 y)tor 0 <y <%
and
(4.7) yi(y) = YAy, for 0 < y< 1,

Note that g#(y) = g(y#(y))- Let R be the set
o # # # #

Later we will require the existence of continuous partial derivatives of W-l

on S and we will assume regularity properties for them. Here we introduce

(4.9) & (y) = 0¥ (x,y) /oy for y in R,
x=L/(1-y)

which is the partial derivative of W—l with respect to y evaluated along the
line x = L/(1-y) in S. It is easily seen that ga(y) is zero on (O,y{) and
(yg,l), and is continuous. and nonnegative elsewhere on R.

‘ In the infinite bundle analysis we introduced the function ¢(y) = 1/k(L/(1-y))
on [0,1) where L > 0. By the properties of Kk stated earlier ,p is bounded,
continuous and decreasing on [0,1) and satisfies ¢(y) > 0 for 0 < y<1l. Also

¢(y) » 0 as y > 1. Later we will require the existence of the derivative ¢' and

will assume certain regularity properties for ¢'.
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{ ¥
1 Some important Gaussian processes. Let {V(y); 0 < y < 1} be the Brownian 3

bridge with mean zero and covariance function SAt-st. Related to V is the

Gaussian process {Z(y); y€R} where

(4.10) z(y) = ga(y)V(y) for y in.R .

The covariance function for Z is

T YoReT W

(4.11) I'(s,t) = (sAt—st)ga(s)ga(t) for s and t in R,

and the mean for Z is zero. Also arising is the Gaussian process {Z(y#(y)); ¥y €R}
with mean zero and covariance function I‘(y#(s), y#(t)).

*
The random variables T(y). For Case I (L<L ) and 0 <y < 1 let

- fg' ¢'(S)Z(y#(s/\y))ds for 0 < y < 1 except at y = y#

. :
(h.12) T (y) =
t ¢(y{)ga(y{)+max(V(yi), 0) for y = y{ P '-
where "
” (4.13) g (y)" = lim OY(L/(1-y),z)/3z and 0 < y < z < 1.

Also for 0 <y < 1 let

|
|
t
5 i -

(1.1h) o*(y) = Sy g #'(s)0" (5,00 0¥ (s a), ¥F(s ) )as 0,

Note that TI(y) and oe(y) are zero for y in (O,y{). Also TI(y) is a normal

i
i
1
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random variable for y in (y{, 1] with mean zero and variance 02(y) that will be

‘ finite by our assumptions. But for y = y{, we have TI(y{) > 0 and P{TI(y{) = 0}
= 1/2. Also, P{TI(Y:) < x} is a normal probability when x > O,with mean zero and
)2

variance (ga(y:)+)2y{(l—yi)¢(y{ for this normal distribution. For Case II

»
(L=1L finite) and 0 <y < 1 let

{ 0 for 0 < y < yg =
(4.15) TII(y) =
#, 0, #
¢wygwg%uww9&)mrgsysl
where 0 < yg < 1. Thus, for y in (yg,l] we see that TII(y) is a normal random

#2
2) but with the

variable (having mean zero and variance (ga(yg)+)2yg(l—yg)¢(y

probability on the negative axis moved to the origin (zero). For Case III

*
(L >L ) we let
(4.16) T17{¥) =0 for 0 <y <1,

Finally let

(4.17) t(y) = -1 & (say)o?(s)as, for 0 <y <1

which will also be finite by our assumptions.

; ;1 One main goal is to show that as n -+ ®, the normalized bundle failure time
; /n {Tn - t,(1)} approaches TI(l) in distribution when 0 < L < L*, and TII(l) when
| Lok (finite), and T, (1) when L > 1", Recall that I is the initial collapse
y load defined in connection with Case II. Note that t_(1) is positive when L < L

*
and is zero when L > L . We are also interested in the time to failure of a given

e e
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fraction y of fibers in the bundle. Letting [ny+l] be the integer part of ny+l,
we will show that as n =+ ® the normalized times vn {T[ny+l] -t (y)}

approach TI(y),TII(y),and T...(y) in distribution for Gases I, II and III

IIT
respectively. Note that t _(y) =0 for 0 < y < y: and t_(y) = t”(l) for
y: <y £1. For the vast majority of cases these times to failure will be
asymptotically normally distributed with mean t_(y) and variance Oz(y).

Our approach is as follows: First we demonstrate that the fiber failure

|} |}
times Tl < ces S-Tn for the quantile model of the previous section are equivalent

in distribution to Tl < ... £T the fiber failure times for the bundle as originally

described. This is accomplished in the following section. Hence, we need only
]
show that as n + ©® the normalized bundle failure time Tn(l) of the quantile

model approaches TI(l),TII(l) and T___(1) in distribution for Cases I, II and III

IIT
respectively. We also show the parallel results for T;(y) for fixed y in (0,1).
Actually,we will prove the stronger convergence in probability when the uniform
quantile processes Vn and the Brownian bridge V are constructed as in Pyke and
Shorack (1968) and the appendix of Shorack (1972a). Our approach will parallel
in some ways the approach used in the proofs of Shorack (1972a,1972b), and we

will draw frequently on results given in the appendix of Shorack (1972a).

B T R W UL W S I o Sy TSR, | T Iy S

Rl g o S o




5. EQUIVALENCE IN DISTRIBUTION OF FAILURE TIMES FOR BOTH MODELS

The idea of using uniform random variables as building blocks for
increasing sequences such as {Ti} is well known. Hence,the equivalence in

L L
distribution of the random vectors {Tl,...,Tn} and {Tl,...,Tn} is not surprising.

We will only sketch the proof of equivalence, leaving the details to the reader.
Let yb be the number of fibers which fail at time zero (as a result of the
application of the bundle load program £(t), t > 0). If al! fibers do not fail

immediately, that is, if N < n, let 'T'l el Tu be the distinct time points

—0
at which the remaining n-N, fail and let N, > 1 be the number of fibers which
= M
fail at time T, for i =1, ... , M. Either N =nand T =0or I N, =n and
i -0 n i=0-i
T = > .
'1‘M Tn 0
i < A ese
Fix the time points 0 tl < tm and the i:tegcrs N0, s M
such that n, >0 and n, >21lfori=1, ... ,mand I n, =n. Let dti be the
i=0 ~ 5

infinitesimal time interval [ti, t, + dti) and let dt. & n, be the associated

i i
set in two-dimensional space of time and the nonnegative integers. Let

%= (tl,...,tm) and p = (r_lo,...,x_xm) and let A(&,;&) be the event
(5.1)  Ag.p) = {Ny =n,, (T,N,) €dt; 8 n,...,(T,,N)edt 8n} .

We wish to evaluate both P{A(R,Q)} and P{ljo = n} for both the actual model and

the quantile model where primes on the random variables will be understood for

the quantile model. From the resulting expressions we will conclude that the

quantile model is probabilistically equivalent to the real model.

First we define several quantities which will be useful in the proofs.

Let ﬁJ =1, i EJ for J = 0,...,m so that HJ is the number of failures up to
and including time tJ. Second let n, =n, - lfori=1,...,m and put n, =1,

so that n, will be the additional fiber failures (Daniels feature) triggered at

time t, by the first fiber failure (Coleman feature) at time t

g Note that

1"
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25 :
ng = no =1n,. We make use of the load histories zn’o’o =0,
(5.2) ) (s) = n(s)/(n=-j+1) for t > 0 and j = 1,...,n_ + 1
n,0,J i 0
and
nl(s)/(n-ﬁk_l) fort, , <t <t andks= - [ 2
nk(s)/(n-ﬁi_l-,‘j) for ti <tandj= 0,...,ni +1, 1
for i = 1,...,m where to = 0. These are used in the generation of
(5.14) b, (3) = F(tilzn,i,J)
for i =0,...,mand J = 0,...,n, + 1. Finally,for i=0,...,mwe let Hi(s,O) =1

i
for s > 0 and

(5.5) Hi(s,r)
1 " s ) % I
< ; : sl[pi}l)-bi(O)] [b, (3,+1)-b, (1)1 “...[0,(F, _,+1)-b, (5, ,+1)]
k=1 lf31<. . .<3k=r Jl! o .Jkl (s-r)!

forlirs_s,wherejv=31+...+Jvandthesumisoverk=1, «ss s r and all

integers ] < 31 e, & Ek =r.

Lempa 1: For the bundle as originally described and for the quantile model

m m
(5.6) P{A(k.R)} = le(“'ﬁa-l)aF(tJI“n,a,o)iﬁoni(“'ai-l‘l’“i)

el T St R e el 5




forn0<nandm_>_l. Also

(5.7) P{Ny=n} = P{T =0} = H (n,n).

Proof. For the bundle as originally described first examine the failure activity

at time zero and compute '»'-{1!0 = no} for 0 < n. < n. This is essentially as

0
described by Daniels (1945). Next compute P{('T‘l,ljl) € dt s nl|!0 = no} when

1< n, % n-ﬁo. See Phoenix (1978) for part of this step and mimic the procedure

at time zero for the remaining part. Similarly compute
for ﬁi <nandl¢< D S n-ﬁi. Thus, to arrive at (5.6) we combine these expres-

sions upon noting "given (Ti,gi) edt, 8 r_li" is the same as "given ('f'i,lji) =

] 1
(ti,ni)". For the quantile model, the event A(t,n) entails T, = ... = Tn =0,
= ~ N g

1
0

L} ] ! '
'1‘n == Tﬁ ggl,...,Tﬁ bl e Tn‘g‘zm when 1 5_no < n. By (3.4)

0 1 m-1 :
the Vi must satisfy

< = = Vi

(5.8) v _F(olnn’o’d) bo(J) for § =1, s,

and for i = 1,...,m

(5.9) F(eg]2, 5,00 < T F(tg+at, |2 5 o)
and
(5.10) Vﬁi-fd < F(ti“‘n,i,,j-l) = b, (3-1) for j = 2,..05my -

Similar statements apply for n, = 0 and n0 = n. Employing the well known joint

distribution for Vl L eee £ Vn, which are an ordered sample from the uniform

ki
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distribution, we again may construct (5.6) and (5.7).

Theorem 1:
E - e o

The random vector (T Tn) for the original model has the same distribu- {

IERRRE

]
1""’Tn) for the quantile model. .

tion as the random vector (T

Proof. By our assumptions on m, and t ,...,tm and n seeeshs all possible

1 0

outcomes are represented by the events A(ﬁﬁﬂ) and EO =n, The theorem is
immediate from Lemma 1.

We remark that results generated by Daniels (1945) for the static fiber
bgndle model follow from the results given here. In Daniels' problem, the
b;ndle fails immediately under the constant load program ll(t) =L,t>0or
does not fail at all. Here,the event associated with immediate failure is the
event {§0=n} and its probability is Ho(n,n). Under (1.2) we may view
F(x) = ¥(x,0) as the c.d.f. for the initial strength of the fibers and recall
that bo(J) = ¥(nl/(n-3+1)) which is the probability that a given fiber will
fail under the load nL/(n-j+l1) for j = 1,...,n. Thus,H (n,n) may be viewed as the
c.d.f. for the initial bundle strength as a function of L = Ls/n and is equivalent to
Bn(nL) of Daniels (1945), section 10, page 413.

We remark also that results generated by Phoenix (1978) for an earlier
time dependent model follow from the results given here. In the c¢arlier model
¥Y(x,z) = l-exp{-!jz)}, vhich is a function of z only so that bi(O) R bi(ni+l)
mri=L“”mmd%w)=.”=bd%ﬂ)=m kmg%h¢)=0mrlgris
but Hi(s,o) =1 fori=0,...,m. Consequently P{§0=n} = 0 and P{A(g,&)} is nonzero
only wvhenn, =n. = ... =n_ = 0 which forcesm=n and n, = ... = ﬁn = 1, Thus,

0 1 m 1

A(,E’E) is, in this case, the event {Tl €dt., ..., Tn € dt} and (5.6) becomes

i
n n
1o é.gzn} = n!igldF(tilzn,i,O) which is equivalent to equation

(2.14) of Phoenix (1978). Hence,fibers fail one-at-a~time in the earlier model.

P{'l'l € dt

Henceforth we drop the primes on the T,'s of the quantile model.

i
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6. SUMMARY OF TECHNICAL ASSUMPTIONS

Earlier we introduced the functions \l’-l, g, ga and ¢. Here we summarize
earlier assumptions and properties and introduce further technical assumptions

that will be required in the asymptotic analysis. Any new properties among

those that follow are easily verified.

Al. On S the function \l'-l(x,y) is nonnegative, is increasing in y, is

decreasing in x, is jointly continuous in both variables and satisfies \l’-l(x,o) = 0.

-1
A2. ¥ “(x,y) is zero on $° and is positive and strictly increasing in y

+
on S.

The partial derivatives of ‘l’_l are required to have special properties on S.

<% 5
A3. Y (x,y)/dy and 3Y¥ l(x,y)/ax are assumed to be jointly continuous in

y and x on 5.

AL, 3‘!’-1(x,y)/8y and BW-l(x,y)/ax are zero on S° by A2.

Let the bounding functions B and D be defined by 3

" %
(6.1) B(y) =My ~(1-y) for 0 <y <1

and

-3/ 2+bl+6 -3/2+b 2+6
(6.2) D(y) = My (1-y) for 0 <y <1,

where M > 0, 1/2 < bl < Dy b2 > 1 and § > 0 are constants. Also,L is a positive

constant and we understand that M may depend on L.

A5. (Boundedness). We assume that a‘l’-l(x.y)/ay < B(y) for (x,y) in 3

and x > L.
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A6. (Boundedness). Given 0 < by < 1 we assume |8V-1(x,y)/3x| M

it ‘
i e

; i 3
? for (x,y) in S satisfying 0 < y < b, and L < x S_L/(l—b3) where M is a
i ; 3
! positive constant.
# # #
AT. (Case I). For points 0 §_yl 5 5.y3 £ 1 we have that g(y) is

nonnegative and continuous on [0,1), is zero on [O,y{) and on [yg,l), is strictly

increasing on [y{,yg) and is strictly decreasing on [yg,yg).

A8. (Boundedness). We assume that g'(y) exists and is continuous on

R = (O,y{) v (y{, yg) v (yg, 1), and that g'(y) < B(y) on R.

A9. ga(y) is zero on (O,yf) and (yg,l), and is positive and continuous

elsewhere on R.

Bl. The function ¢ is bounded, continuous,decreasing and positive on

[0,1) and satisfies ¢(y) > 0 as y + 1.

B2. (Boundedness). We assume that the derivative ¢' exists on (0,1) and

that |¢'(y)| < D(y).

The bounding of ¢ by D, and of g and aw-l(x,y)/ay by B will permit us to derive

,...,‘.

important asymptotic results. These bounds are unrestrictive in most applications.
In the proofs that follow we use right continuous versions of some results

in the Appendix of Shorack (1972a). These are as follows:®

|
!
{
rli Rl. (Convergence of Vn to V).
| (6.3) sup |V (y)-V(y)| +, 0,
0<y<1 >

that is, every sample path of the Vn process converges uniformly as n*® to the

corresponding sample path of the V process.
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R2. (Glivenko-Cantelli Lemma).

(6.1) sup |I"(y)-y| + Oasn+w.
oﬁyil n e

R3. For q(y) = [Y(l-Y)]l/2-6/2 we have

(6.5) sup |V(y)|/aly) = 0_(1), vV (y)|/aly) = 0_(1)
0<y<1 * 1/n5;;§—l/nl - hbiel ’

for n > 1 and

(6.6) (nJ'/:;"c;(llxl))-1 +0asn-+>,

Ri. (Lemma A3 of Shorack (1972a)). Given € there exists 0 < B = Be <1

and a subset S of Q having P(S ) > 1-€ on which
n,€ n,e

(6.7) Bt < I‘;l(t) < 1-B(1-t) for 0 < t < 1.
Thus when B is our bounding function (6.1) we have
(6.8) B(I';l(y)) gMBB(y) for0<y<1

for some constant M_.

B

We now proceed with the major theorems.

|
|
i
|
|
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T. ASYMPTQTIC ANALYSIS OF THE QUANTILE MODEL

The main result of this section will be that given 0 < y < 1 the
sequence {Tn(y)}:=l converges in probability to a certain random variable when
Vn and V are constructed as in Pyke and Shorack (1968). We begin by proving

several lemmas.

Lemma 2: Given 0 < e <1

S S sup W (y) - gly)| + 0,
0<y<1-€

(7.2) sup lwi(y) - s#(y)l *. 05
0<y<l-€

(7.3) sup |g_(y) - gly)| + 0,
0<y<l-e

and

(7.4) sup Isﬁ(y) - g#(y)l +0asn+®,

0<y<l-€

Proof: By assumption Al we have uniform continuity of ‘!’-l on the compact set
{(x,¥); L < x < L/(1-¢/2) and 0 < y < 1-e/2} . Now sup{|L/(1~y) - L/(l—yn(y))l;
0<y<1l-€} +0asn~>>since 0Ly - yn(y) < 1/n for y in [0,1]. Also

sup{II‘;l(y)-ﬂ; 0<y<1} +, 0asn > by (6.4). Thus,

Cswp YL/, (), TTHE)) - ¥R/ )|+, 0
bsy<i-e




N
-~

"ﬂ

prrveron

a2,

and (7.1) is veritied. Similarly, (7.3) is verified. Now for

0 <y < 1l-e we have

| sup W (1) - sup g(t)| < sup IWn(T) - g(n)|
O0<t<y 0<t<y 0<1t<y

and (7.2) is verified. Similarly, (T.4) is verified.

Lomma 3: Let y be in R and let
(7.5) Re(y) = {x; [x-y| <8 and 0 <x <1}

If 6 > 0 is chosen so that Rc(y)dk then as n + «

(7.6) sup{|Z_(x)-Z(x)|; x € R(y)} +, o.

Proof: Let

(7.7) A(x) = (Y HL/(-y (%), THx)) - g (W ) - %)
n n n n n 2

(taking the right limit at points x where I';l(x) = X). We have

Zn(x) =An(x)Vn(x) and Z(x) =ga(x)v(x) on R and

(7.8) |2,-2]

Ia

3
|V -A V] + lAnV-g V|

Ia

3
Ia_11v_-v] + |v]|a_-g®.
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Now sup{IVn(x)-V(x)|; 0<x<1}+ 0 and V(x) is bounded on (0,1) for

fixed w in Q. The lemma will follow upon verifying that as n + =
(7.9) sup{IAn(x)-ga(x)I; x € Re(y)} » 0

since ga(x) is bounded on Rs(y). By assumptions A3 and A4 we have
continuity of 3Y_l(n,£)/3£ on the set {(n,£); x € Rs(y) and Ig-xl < &'
and |L/(1-x)-n| < 6"} where &' > 0 and 6" > are chosen so that this set
is contained in § (as can be done by the line touching assumptions) and
where RG +6' (y)€ R since R is open. Moreover,the continuity is uniform
since the set is compact. Now sup{|L/(1-x) - L/(l-yn(x))l; X € Rs(y)} +0
as n -+« and we have (6.4) also. Thus,for n exceeding some ny,G,G',G",w
we have for x in Ré(y)

1

(LX), 2)| |

9 9
(7.20) |a G)-g°(0)| < |55 (L/Q-v,(x)), &) - 5=

for some £ between I‘;l(x) and x, and (7.9) follows from the uniform

continuity.

Lemma 4: Let
(7.11) Rﬁ(y) = {x; y#(y) -8 <x 5_y#(y—6) +6 and 0 <x <1}

Exx- w in @y vy i85 (0.1) and 6§ > 0 such that Rﬁ(y)c(o,l).’. For n

exceeding some n we have
S0,y

(7.12) whiy) = supti_(x); xe Rh3,




|
|
|
|
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and for n exceeding some n, -
?

(7.13) gh(y) = suplg_(x); x € RE(y)).

Proof: Suppose 0 <y < yi. Then by assumptions Al and A2 we have
¥ 1(n,E) = 0 on the set {(n,£); 0 <x <y-8§ and |L/(1-x)-n| < &'
and 0 < & <y - §/2} for some &' > 0 depending on 6. Now for

0 <y=< yf we have

(T.14)  sup{W _(x); 0 < x <y}

= max[sup{W (x); 0 < x < y-8}, sup{W_(x); x € Ri(y)}]

and by (6.4) we have sup{|1".;l(x)-x|; 0 <x <y-8} < 8/2 for n exceeding

some n Also, sup{|L/(1-x) - L/(l-yn(x))|; 0 <x<y-8} <é for n

S,w°

exceeding some n. Recalling (3.9) we have for n exceeding n! 0 =
L]

max{n(s’w, ns} that
(7.15) sup{W_(x); 0 < x < y-8} = 0.

But W (y) >0 for 0<y <1l and (7.12) follows from (T.14). Next suppose

yf_ TyYs yg. Then by assumption A7 we have g(y) > 0 and g(y) strictly

#

increasing on [y’{, ¥,). Thus g(y) - g(y-68) > 6" for some &" >0 '

depending on y. By Lemma 2, for n exceeding some n Sy we have

> et
sup{W _(x); 0 < x < y-8} < g(y-8) + 6"/2 < g(y) - §"/2 while W) >gly) -
§"/2. Now y#(y) = y so that Rﬁ(y) = {x; y-6 < x < y}. Hence (T7.12)

easily follows. Lastly suppose that yz <y <1l. Then we already have



(7.16) supiW (x); 0 < x < y} = sup{W (x); yg -8 <x <y}

L —

for n exceeding some LN and (7,12) is verified for
?

#
yg<yiy2+6. If y2+6<y<l we have by assumption A7 that

8(Y§)-g(x)>6"‘ for y§+6ixiy and some 6''' > 0. By Lemma 2

we have sup{Wn(x); yg e <xn <y} < (g(yg) + g(yg + 8))/2 while

# #

# :
“n-(yz) > (g(yz) + g(y2 + 8))/2 for n exceeding some ns,w,y so that (7.12)

holds again. The proof of (7.13) is analagous.

Lemma 5: (Case I) Suppose y is in (O,y{)u(yf,l). Then as n + ®,

# #
(7.17) |Zn(y)-Z(y (y)| +, 0.

Proof: Fix € >0 and w in © and y in (O,yf)u(yf_,l). Then there exists

8 > 0 such that Rd(y#(y))c R and

#

, (7.18) sup{ |2(x)-2(y" (y))|; x eRG(y#(y))} Sie/bs

This follows since Z(x) =ga(x)V(x) is continuous in R given w in Q. By

Lemma 3 we also have for n exceeding some that

n5369w9y

(7.19) sup([2_(x)-2(x) |5 x € Ryy* ()} < ess.

Now |Zn(x)-Zn(y)| < IZn(x)-Z(x)l + IZn(y)—Z(y)| + |2(x)-2(y)|. Hence, by

(7.18) and (7.19) we have for that

n>n
€,0,w,y

|
a8
‘;

(7.20) sup(|z,(x) - 2, (5P y)) |5 x € Ry} < er2.
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We recall from Lemma 4 that tor u exceeding some n:S we have
"W
sup{wn(x); DExn<y)e= sup{wn(x); X € Rf;(y)} and for n  exceeding some

)
na,y we have sup{gn(x); 0<x<y}= sup{gn(x); x € R’:(y)}. Hence,for

n>n = max{né

g } we have

]
n
3 8%

(1.21) 2y =/ [supti (0); x € RE)} - supte (005 x € RE)I.

Also, R e s yre R ana

! : #
1nf{wn(x)~gn(x), x € Ré(y)}

(7.22) < sup{W_(x); x enﬁ(y)} - supfg (x)5 x ekﬁ(y)}
< supli, () - g ()3 x € RE(y)).

Thus,for n > we have

n'ssmay
(7.23) inf{Zn(x); x € Rd(y#(y))} < Zﬁ(y) = sup{Zn(x); x € RG(Y#(}’))}.
Now by (7.20) we have both

#

|sup(z_(x); x € Ry ()} - z_(y*(y))| < er2

and

|inf(z, ()5 x € Ry (¥} - 2_(sHy| < er2
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for n exceeding some “L,G,m,y' Taking r%,&,w,y max{na,w’y,ne’a’m’y}
we have for n > n' that
€,0,w,y
(7.24) 1zt -z F | < er2

in view of (7.23) Observe that

-zt on| < 1oz stonl + 1z ton-zeton].
Hence,for n > né,é,w,y we have from (T7.24) and (7.19)
that
(7.25) Izt )-2sP | < er2 4 er6 < e
which gives us the lemma.
Lemma 6. (Case I) Suppose 0 < yﬁ < 1. Then as n —+ o,

#. #, 9, #.+ #

(7.26) |2, (y7)-g"(y]) 'max(V(y;), 0)] 26,0
Prcof: Take w 1in § so that V(yf) < 0. Then since V(y) is continuous on

#
1

#

[0,1] there exists & satisfying 0 < § < y. such that V(y) < 0 for ;- §< ¥y g.y:.

(6.3) we have for n exceeding some n that Vn(y) < 0 and thus

S,w
r;l(y) <y for yf -8 <y §_yﬁ. Now W-l(x,y) is increasing in y on S by

Al. Hencesby (3.9) and (3.16) we have

=L L -1 L
(7.27) 0 f."n(y) f.gn(y) £3 (1:7;T§T s ¥ - ¥ (1:7;T;7 s Yn(Y))
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; # #
for y in [y, - &, y;] where we have subtracted the quantity g(y (y))
n

. . # -
which is zero since Yn(y) L3 il By assumption A5, a3y l(x,y)/ay < B(y)

for (i,y) in S and x > L. Thus,upon ohserving the properties of the bounding

function B(y) we obtain from (7.27)

(7.28) 0 2 W) <8, = Bl - o)+ syhy - v o),

for y in [y{ -8, y#]. Now we have 0 < y - Yn(y) < 1/n for y in [0,1] and from

the proof of Lemma L4 we know that Wﬁ(y{-ﬁ) = 0 and gﬁ(yi-é) = 0 for n exceeding
1]
some ng . Also,

]

#, # #, # o #
g (y") = max[g" (y.-6), sup g (y;-6+z)]
no- 1 ca AL Of_zf_G n'v1l s

and thus it follows from (7.28) that /H gﬁ(y{) + 0 as n > ». Similarly,
; /n Wﬁ(y{) +0 as n > o, Thué Zﬁ(yi) + 0 as n > »,
Next suppose ¢ > 0 is given and w in Q is given such that V(yi) > 0.

Since V(y) is continuous on [0,1] there exists a ¢ depending on € and

? | satisfying 0 < 6 < y{ such that V(y) > 0 for yi -6<y g_yi and
-
! 3, #.+ oo # €
(7.29) g (yl) sup{IV(y) = V(yl)l’ yl ottt -k § iyl} i.Q'

Also,since V(yf) > 0 we have by (6.3) that r;l(y) >y for yi -8 <y f_yi

b ¢ and n exceeding some n

. Now for n>n
S ,w 7 ()

W

=4 L -1, ¥
¥ K o T_7(y,:))
X i e

#
(7.30) wn(yl)

S BN TSN

-

L =1 # #

i #

ol g = ( s EXT “(y,)=y;) + g (y))
{ B 13 & ¥ n 1 nv1l
_, 1-v,(y;)




for some yt < g E_r;l(yf), and note that the point (L/(l-yn(yt))’ £) is

: +
in S . Hence,for n > ng
]

=1,
#, _ oY L # #
(7.31) MW (y]) = 55— )V (y)) + g ().
1=y (%)
n-1
5 # #
On the other hand for y in [yl - 6, yl] we have
syt
(7.32) () < g GV (y) + /n g (y)

for some point (g,n) in the set

stN{(x,2); yf -8<z 5.r;l(yf), L/(l—vn(yﬁ—é)) <x g_L/(l-yf)}

which is nonempty for all n > g Now by (6.3) we have sup{an(y)-V(y)l;

yi—é <y f_yﬁ} + 0 for fixed w in Q and note that V(y) is bounded. Moreover, by the
joint continuity (A3) and B(y) bounding (A5) of aw-l(x,y)/ay we may shrink 6

and choose n sufficiently large so that both BW-I/BE of (7.31) and BW-llan of

i

+
(7.32) are as close to g yi) as we wish. Thus,we may shrink § and choose

nw € sufficiently large so that
(7.33) | 06w _(v-e2 )| < es8
for (7.31),and

(7.34) [a¥ )V (v)-6" () V()| < e/

for (7.32) for all n exceeding nw’e. Recall also that 0 < vn g:(y:) = sup{v/n gn(y);

0<y 5.y{} < ¢€/8 for all n exceeding some n, - Thus, from (7.31) we obtain

i D s
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|
|
|
!

(7.35) 18w - vt < en

for all n exceeding n; ¢ = max [ne,nm e]' Similarly,for all y in [y{—d,yll we
find from (7.32)

(7.36) /n W () 2 e (y#) V(y) + e/b

and we have
;]

- ! # '
for n exceeding n . Now from before /n wﬁ(ylpd) =0 forn>ng

(7.37) W, (yl) = ma-x[W#(yl-G), sup W (yl-6+z)]
0<z<¢8

Thus, by (7.29) and (7.35) to (7.37) we arrive at the key relation
(7.38) /n W (yl) < /'w#(y{) </nw (y{) +e

5 el ' ' #

for n exceeding some o max[ns’w,n w,e] . Since Z (yl {W#(yl) -g (yl)}
and Jﬁig#(y{) + 0 as n + ®» we obtain from (7.38) that Zﬁ(yl) > Zn(yl) and from
(7.35) that Z (yl) > g (yl) V(yl) for this w in Q . The set w for which v(y{) =0

has measure zero and our result is a.e. and the proof is complete.
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Lemma 7: (Case II), Under the assumptions of Case II,

(7.39) Zﬁ(y) +, 0 fory in IOJg)
and
# 9, #\+ # #
(7.%0) IZn(y)-g (y2) max(V(y2),0)|a-.>e.0 for y in [yz,l).
Proof': The proof is similar to that of Lemma 6. To show (7.39) we recall
that yi = yg and from the proof of Lemma L, that Wﬁ(y{-G) = 0 and g:(y{—é) =0

for § > 0 and n exceeding some Ns Hence choose § > 0 such that y < y: - 6.
b

To verify (7.40) we repeat the proof of Lemma 6 with the following modifications.
Replace y{ -8<y< y{ with yg -8<y'< yg + § and make the other associated
changes. Now for n exceeding some n 8,0,y we have from Lemma U4 that

Wi(Y) = Sup{wn(x); X e Rg(}’)} and g:()') = sup{gn(x); X e Rg(y)}. Hence when ®
is in @ such that V(yg) < 0, we obtain Zﬁ(x) + 0 as n~+ o, For w in Q such that
V(yg) > 0 we find |vn gﬁ(yg + 8)] > 0 as n > © and arrive at the analog of

(7.38) whieh is
(7.b1) A vh < AW < AV h) v e

whence Zfl(y) > Zﬁ(yg) > ga(yg)+v(yg) as n > «©, Again the set of w for which

V(yg) = 0 has measure zero and the proof is complete.




Lemma 8: (Case ITI). Suppose y is in (0,1). Then as n + ®

#
(7.k2) 22| 2 o

Proof: Choose € > 0 such that y < l1-e. Then by Al and A2, ‘l'-l(n,i) =0
on the set {(n€); 0 <x <1-e and |L/(1-x)-n| < 6 and 0 < € < l-¢/7}
for some & > 0 depending on €. By (6.4) and the fact that
supflL/(l—x)-L/(l-yn(x))[; 0<x<1l-e}+0 as n -+ we have from (3.9)
that sup{wn(x); 0 <x<1l-e} =0 for n exceeding some B Similarly,

sup{gn(x); 0 <x<1l-e} =0 for n exceeding some n_. Hence,(T7.42) is

immediate.
Lemma 9: Let
(7.43) R, = 7/ (4(1/n)-¢(0)W, ,
(7.44) Rige /n ¢((n-l)/n)max{wi; S PSR SN
1 -1
(7.45) R o =/ [ e v MLy |
and
(7.46) R, =/ [t o (¥ XL, y)d
. N (n-l)/n y syJay.
Then as n > »
(7.47) R s 0, R , * 0y R4 >0, R, +0.
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Proof: For R we have "l = V-l(L,Vl) and by A5 and B2 we may write

nl

Vl 1/n
(7.48) IR, | <Y ([~ B(y)ay) ([ "Dly)dy).

nl|

On the event Vl < 1/2 and for n > 2 we have

b #1 b.+6-1/2 0 S

1 1 =M, (nV.) :
(7.49) L S /n M V) (1/n) S By n

Now P(Vl <1/2) 1 as n =+ and nV1 = Op(l). Hence,since &6 > 0

: -8 %
we obtain |Rnl| f_Hln Op(l) ; 0 as n -+ «. Next, consider Rn2 and observe
by Al that 0 j_max{wi; f=E s} g_Yal(L,Vn). Henceson the event vn > 1/2

and for b2 # 1 we have

\'/
1 n
IR | < /A 11003y | 1] By
—'1/2+b. +6 -b +1
1 ' "
e SEE, e T ). R
' 'b2'6+l f -b2-6+l -b2+l
< M2M2n + M2M2n (l_vn) .

Recall that (l-Vn)n = Op(l) and in fact has a limiting nondegenerate continuous

distribution as n »+ «® and hence so does ((l—Vn)n) b2+l. Now b, >1
, ~b,-6+1
and P(V >1/2) 1 as n+« Thus MMn +0 as n~+> and
" -b2+1 -5
MM n ((1-v_)n) = n Op(l) G e Thus |R | + 0
for b2 o R b, =1, the last term in (7.50) is instead

" : 6
- M2M (1/n) (log(n(l-Vn)) - log n), and we arrive at the same conclusion.

2
For Rn3 we have for n > 1

S, e

PORTESY




IR | </ [[2/™1SY BGoax|pey)ay|

-b1+1l -3/2+by+8 S
(7.51) <My I(l,/ny y dy = Mjn bas

as n »+ «. Finally,for Rnu we have for n > 1 and 'b2 > gu L

£ B-3iaal vty O -b,
IRyl < AU S (- i, +u, [Y (1) Zaxay|

b, ~8/248 ' T -b,*1

1
(1.52) Al Ay (M, +M,  (1-y) )ay|

s b2+6-l/2

g2 /EMth (1/n) +2 /EMhMl:"'(l/n)6+l/2

as n+=. Ifb,= 1,the last term in (7.52) becomes instead

" i
/n Mthfé/n z 1/ 2"'Glog(l/z)dz and we arrive at the same conclusion.
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Before proving the major theorems of this section, we prove one more lemma.
[y}

*
In what follows the restriction will mean f (t) = f£(t) for 1/n < t < 1-1/n,

*
and £ (t) = 0 otherwise for f on (0,1) or [0,1].

Lemma 10: Given € > O there exist subsets §n g*» B 21 satisfying
L
- e A
Pfsn,e) 1l-e for which
(7.53) ¢80 Z#*(s)l < M B(s)q(s) for s in (0,1)
. x(8, )|z, < M B(s)q ,

where X(S) is the indicator function for the set S, ﬁe is some constant, and

q(s) is as defined in result R3.

#
2

= (b+l)/2) and (6.4) and the fact that 0 < y - Yn(y) < 1/n,we have

Proof: Let b be a constant satisfying O < b < y. and suppose s ig in (0,b]. From A6

(take b3

(7.54)  [30(n,s)/an| <M where O(n,s) = ¥~ (m/(1n), T }(s))

L -
for some constant Mb when n exceeds some oW when n lies between min(I'nl(s),
L]

Yn(s)) and max(I‘;l(s), s) and when (L/(1-n), I';l(s)) is in 8. Thus, by (4.5),(3.9)

and (7.54) we obtain

- ' - -1 -1
$17.55) g(rnl(s)) o Mblyn(s)-f‘nl(s)l _<_Wn(s) _<_g(1"n (&) M'blYn(s)-Pn (S)'

forn>n . From (7.55) we obtain
-Ml') sup{|r’;l(r)-vn(r)|; 0 <1 <s)

#

(7.56) W8 = g

=1
(r;"(s))

' = :
<My sup{ll‘n (D-v (5 0 <t <5}




whence

b)) < & 1Tt en-gts)| + A leter-glio]

(1.57)
+ sup{|Vn(t)|; 0 <t <s}+ M; sup{|/5'(yn(t)-1)|; 0 <1 <s}.

Using (7.54) again we obtain in a similar fashion
(7.58) i lete)r-gh )] < m sup(]/E (v (0-0)]5 0 <1 < 8)

for n > noe Now, by A8 we have g'(n) < B(s) + B(P;l(s)) for n between
b

s and F;l(s) and n in R since b, > 0 and b2 > 0. Furthermore g(s)

1

is increasing on [0, yg). Thus, by (6.4) we obtain for n exceeding some

n. and for s in (0,b]
b,w

A 1t M en-gh)| = e M s)-e(s))]
(7.59)

-1
< (B(s) + B(T (S)))I\’n(s)l-

" '
Consequently,for s in (0,b] and n > R max{nb’m, nb,w} we have the

first important bound

o

-1
1z "(s)| < (B(s) + B(T_"(s))|V (s)]

+ 2M£ sup{|v/n (v (1)-1)|5 0 < 7 < s}
(7.60) + ML sup{[V_(1)]5 0 < 1 < s}
< Mi(B(s) + B(I_"(s)))a(s)[1/(V a(s))

+ sup{IVn(T)]; 0 <t < s}/q(s)]




b
for (7.60) to hold for all n. Now suppose s is in [b,1) and choose 8' such that

1/2-8/2

where q(s) = [s(1l-s)] . Obviously M may be chosen large enough

0 < L-8'. Then for n exceeding some n we have by Lemma U4 that

b,6',w
wﬁ(s) = Sup{Wn(T); b-8' < 1t < s} and gﬁ(s) = sup{gn(T); b-8' < 1t < s}. Thus,

for n>n we have

b,6',w
|Z:(s)| gv/ﬁ'sup{lwn(r)-gn(t)l; b-8' <'1 < s} E

syt
(1.61) < sup{ 3% (L/(l-yn(r)), &(t))

IV (T)'; b-G' <1< s}
o ERACs

for some £(1) between 1t and F;l(r) where the "sup" is over 1 for which
the points (L/(l—yn(t)), g(t)) 1lie in S. Now by the properties of B(s)

we observe that

(7.62) B(£(1)) < B(1) + B(I_"(1)).

Hence,for n > n we have by A5 the second important bound

b,6',w

(7.63) 128 ()] < sup{(BCr)+B(ITH()))a(1); b-6" <t < s}

» sup{[V_(v)[/q(1); b-6' < 1 < s}

(FAL *
for s in [b,l1). Now because of the restriction Zﬁ (s) is zero on

(0,1/n)U(@-1/n,1]. But on [1/n,b] we have




— ————

(T.64)  sup(|V,()]3 0 < v < sMals) + 1/(a(s)/h)
<" "supt [V "(1)[/a(1); 0 < T < 8} + (V) + 2)/0A q(1/m))

= Op(l)

by R3 and the fact that nV
b,w

1 is Op(l). Thus,on (0,b] we have for n > n

that
# -1
(7.65) |z (s)| < (B(s) + B(T_ (S)))q(S)Op(l)

by (7.60) and (7.64) and in fact, this holds for all n. Also,on the sets

S

’n,e/2 of R4 where P(S

n,e/2) < 1-¢/2 we have B(s) + B(I‘;l(s)) < 2MB(s).

Consequently,for s in (0,b] we obtain
#
(71.66) - 1z, ()1 gB(s)q(s)op(l)

on the subset S Now for s in [b,1-1/n] we have by R3 that

neel2
sup{lvn(r)l/q(t); b-§' < 1 < s} = Op(l). Also, B(s)q(s) grows unbounded

as s =+ 1 since b 1. Thus,on the subset S Wwe may replace

>
2 =~ n,e/2
B(t) + B(P;l(r)) by ZMBB(T) in (7.63) and we obtain (7.66) again for n > 1

and s in [b,l1). Thus,we may also construct subsets §n e ‘satisfying
’

- C § & : -
Sn,e Sn,e/? and P( n,s) > 1-¢ such that (7.53) holds for M€ chosen

sufficiently large.

Theorem 2 (Case I) Fix y in (0,1]. Then as n + =,

with t (y) of (3.20) and 02(y) of (4.14) finite.




Proof: From (3.19) and (3.21) we have for n > 1l/y

e e ; y y
(7.67) T y) =~ [o% ®A'(s)ds -R .+ R, +R,+R,

where R =~ and R . are as in Lemma 9, and

/E¢((n—l)/n)max{wi; i=l,...,n} for ——n;l sy % 1,

b e

(7.68) R, =

0, otherwise,
and

1 # =
/o f(n_l)/nW(S)gn(say)ds for nT L
y -

(7.69) R

0, otherwise.

Also,by Al we have O f_gﬁ(s) < \l’-l(L,s) on [0,1). Suppose y # yf. Then

by (4.12), (7.67), (7.68) and (7.69) we have

] ' 3
(7.70) T (N-T (] < jtjzﬁ (s A y)-2(y" (sAy)) | |8 (s)]ds + .Z. IR ;|

i=1l

: Y y . s
since 0 < Rn2 s Rn2 and 0 ianL&' ianul (and this holds in fact for n > 1).

%
Now by Lemma 5 we have lzﬁ G A Y)-Z(y#(s Ay))lg 0 as n~>o for s in
et #
€0,y;) U(y;»1).  Also, R, 3 0 by Lemma 9. To conclude ITn(y)-TI(y)| $ 0

we will use the dominated convergence theorem upon showing that

|zﬁ*(s A y)-—Z(y#(s Ay |¢'(s)| is bounded on '(O,yi#)U(yﬁ,l) by an integrable

function when w is a member of a suitably defined set of arbitrarily high

probability. By A5 and R3 we have for s in (O,yf)U(yf,l) that

SR s S




-

e
iy
bt

f

i ——

g2yt vyt s |

1z (v(s)) |

#

|A

syt (e))art o)) vyt esn [rastis))

(7.71)

£ B(s)q(s)Op(l)-

Thus,there exists a subset §€/2 such that
: #

(7.72) )2 (y (S))I <M B(S)q(S) for s in (0,y )U(y#,l)

e/2 1 1

_' . . . H _' —
where Ms is some positive constant. Hence,let Sn,e = Sn,€/2 ns /2 where
§n ¢/2 are the sets of Lemma 10 ,and observe that
9
=1 %
X, )1z )z Feen|
= =! g # #

(7.73) < (ME + ME)B(s)q(s) for s in (O,yl)LKyl,l),

¥
and P(S C) > 1-e. We may now use the dominated couvergence theorem on (7.70).

n,

Recall B2 and observe that ftB(a A y)q(s A y)D(s)ds < for y in (0,1].
the theorem once for each w to conclude ITh(y)—TI(y)I g 0. Next suppose

y = yf. Then by (4.12), (7.67), (7.68) and (7.69) we have for n > llyi

#
1

3, #.t

|7 (v )‘TI(Y’:)I < lzﬁ*(yl) -g°(y]) max(V(yl) 0)|<l>(yl

nil'

Y# ye 4
(7.74) + [ h7 ()| [e'(s)fds + T IR
2 izl

By Lemmas 6 and 9, the first and last terms of the right hand side converge

to zero in probability. In fact we have just demonstrated that the middle

#

term does also since Z(y#(s)) is zero on (0,y;).

Apply




G
,.‘ ~ ._-

Finally, the finiteness of tn(y) given by (3.20) is easy since

gﬁ(s) <¥XL,s) for 0<s <1 and by A5

-b,+1

2
Ml + M2(l-s) for b2 1

(7.75) viw, s) <

Ml - M210g(l—s) for b2 =1

for some constants M; and M,. Recall |¢'(s)| < D(s) and obtain a finite bounding

integral for (3.20). The finiteness of oz(y) given by (4.14), is obtained upon

% 9 9
noting that T'(s 2) < 5.8 (sl)g (52)(1-32) for s; <8, in R, and that the

1°8

8
integrand in (4.14) is symmetric in s. and 8, Hence, replace fé fé with 2/t J ¢

1 0 0-*
recall A5 and B2,and obtain a bounding integral which is finite. The proof is
complete.

Theorem 3 (Case II) Fix y in (0,1]. Then as n » =

(7.76) T, 3 T )

and tn(y) »> 0.

Proof. Suppose y is in (O,yg). Then by (4.15) and (3.21) we have for n > 1/y
L . .
(7.77) ITaD-T D < [o 1206 ADor(s)|as + izl LR

*
By Lemma T we have Zﬁ (say) % 0 as n > © and by Lemma 9 we have

I

) aniI*b 0. Recalling Lemma 10 we again use the dominated convergence theorem
i=1

as we did in the proof of Theorem 2 to conclude |Tﬁ(y)-TII(y)| ; 0. On the

other hand suppose y is in [yg, 1]. Then we obtain for n > 1l/y



RS IS R .

%

bl gt e i

Mia it

#

Yo, ## 5
ITa-T ] < [o%12, (s)[[e'(s)[ds + izl IR, |

*
(7.78) + fl#IZﬁ (sA y)~ga(yg)+max(V(y

Yo

#

2),o)||¢'(s)|ds.

Now by Lemma T the integrands converge to zero for fixed s. By Lemma 9

mn
we have | |R
i=1l

ni' + 0 in probability as n -+ ». Thus we need integrable

bounding functions for the integrands in (7.78), in order to use the dominated
convergence theorem. The approach is basically the same as that in the proof

of Theorem 2. The analog of (7.71) holds namely

9, #.+ #

(7.79) lg (vy) max(V(yQ),O)I 5_B(S)q(S)Op(l)-

We thus complete the analog of (7.73) which is

#
2

#

)+max(V(y2

= e P
(7.80)  x(5, o) |z (s)-&"(y )50)|

< ({_+ B)B(s)q(s) for s in (0,1)

and |Tn(y)—TII(y)| * 0 as n > « follows. Finally, to establish tn(y) + 0 as

n > « where tn(y) is given by (3.20),we recall (T7.l4) and note that g#(y) =0

on [0,1). Also g (s) ﬁ_W-l(L,s) vhere ¥ 1(L,s) satisfies (7.75),and |¢'(s)| < D(s).
The portion of the integral for tn(y) on [0,1-€] shrinks to zero as n + ., The
remaining portion on [1-€,1] is easily bounded, and this bound is made arbitrarily
small by shrinking €.

Theorem 4 (Case 1I1) Fix y in (0,1]. As n + =

and tn(y) + 0.
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Proof: We have for n > 1/y

N
(7.82) [T Cvd=T. ()] < IO |z *s)]¢" (say)||9'(s)]as + 2 |R s
L
By Lemma 9 we have I IRnil ; 0 as n > @ and by Lemma 8 the integrand of
i=1

(7.82) converges to zero for each s. To conclude convergence in probability
we essentially repeat the method of the proof of Theorem 2 in view of Lemma 10.
To conclude tn(y) + 0 as n + », repeat the appropriate portion of the proof of
Theorem k.

In practical applications, one invariably will wish to compute tm(y) of

(4.17) rather than tn(y) of (3.20). Thus we have the following.

Lemmg 11 Fix y in (0,1]. As n > o,

(7.83) /(£ (y)-t () > 0.

Proof. We easily establish that

(7.8L) [/ (t (y)-t 2N = /r'fin l)/nlgﬁ(s A v)-ghs A y)|[¢'(s)]|ds

+ 2|Rn3| + 2|th|.

By the methods of the proof of Lemma 10 we establish




n Igﬁ(S)-g#(S)I

(7.85) < sup{vn lg, ()-g(1) |5 0 < 1 < s}
< MB(s)q(s)sup{/n Iy, (t)-t|/a(s); 0 < T < s}.
Now for 1/n <s < (n-1)/n
sup{v/n |yn(t)-r|/q(s); 0:<x <)
(7.86) < sup{/n lv,(t)-t]/q(1/n); 0 < © < s}
= 1/(q(1/n)/n) +0 as n -+
by (6.6). From Lemma 9 we have !Rnal + 0 and anuI +0 as n~+o and

we know that J—(n—l)/n

o so that (7.83) follows.
n

B(s A y)q(s A y)D(s)ds < =

Corollary 5: Let Tn(y) = vn {Tn(y)-t?(y)}. Then for y in (0,1], Theorems

2 to 4 hold with 'Tn(y) in place of Tn(y).

Proof. Recall Tn(y) = /a (Tn(y)—tn(y)) and use Lemma 10.
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8. DISCUSSION AND EXAMPLES

We return to the bundle example of section 2 where ll(t) =L >0 and n was

taken as infinite. We consider the failure behavior in light of the asymptotic

results of the previous section. When the shape function ¥ was Wl of (1.4) we
found Wll and g to be given by (2.5) and (2.13) respectively. Examining

aw;l(x,y)/ay for x > 0, in view of requirement A5,we find b. = 1/2 and b2 = 146

1

suffice in the bounding functions B and D. Thus,for the power law breakdown

rule K, of (1.3) we have ¢(y) given by (2.9) and p > 1/2 is required to satisfy

requirement B2 (whereas the finiteness of t_(1) only required p > 0). In
applications, p > 1 is almost always the case. We also find aw'l(x,y)/ax easily
satisfies A6 and in fact, all the technical assumptions are satisfied when

Y=Y . Now when L < L* we have the Case I satuation. The time to failure

B

T of the positive fraction y of fibers in the bundle has the following

[ny+1]
character. When 0 < y < yi we find tw(y) = 0 and 02(y) = 0 so that Tn(y) =

converges to zero in probability. This is consistent with the

/E.T[ny+l]

infinite bundle interpretation. Now for y = y# > 0 we have tm(yi) = 0 again.

ik

| However ?n(y{) =vn T[ is asymptotically normal but with the probability

nyi+1]

2 on the negative time axis moved to time zero. Also,oz(y{) is positive. Of

; course this result is consistent with T[ > 0 but we may interpret the

{ ny+1]
{ result further. Upon application of the load L on a large finite bundle the
actual fraction to fail may be slightly less than y{ in which case a small

ri amount of time is required for the failed fraction to reach yi. On the other

hand if the failed fraction exceeds y{ initially (with probability approaching

1/2 as n + ») then T is automatically zero. Note that T

| [nyf+1] [nyf+1]
! as n > ©, Now when yi <y < yg we find asymptotic normality of

g5 ?h(y) =vn (T -t (y)) and T t (y) as n + =, But when yg A d B

[ny+1] [ny+1] "p

we find that t_(y) = tm(yg) = t_(1) and oz(y) = oz(y;) = 02(1). Thus T[ny+l]

.2
!
5l
)
|
|
|
|
|
1
|




T

and Tn(l) = '1‘n are both asymptotically normal with the same mean t_(1) and the

same variance 02(1). This is consistent with the infinite bundle concept that

yg was the collapse fraction and the remaining fraction 1 - yg fails instantaneous-

»
ly when yz is reached. When L = L we have the Case II situation with tw(y) =0

on (0,1]. For 0 <y < y{ = yg we find “ghT[ny+l] + 0 in probability but when

¥ . y < 1, we find that v/n T[

¥s S is asymptotically normal (tw(yg) =0,

ny +1]
oa(yg) > 0) but with the probability on the negative time axis moved to time zero.

Also /n Tn(l) has the same asymptotic distribution as vn T[ for yg <y <1

ny+1]
This is consistent with Daniels' asymptotic result for classic bundle strength.
Recall that the initial bundle strength was asymptotically normal with mean L*
and variance which decreased as 1/V/n. Hence upon application of L = L* the
initial strength may be exceeded (with probability approaching 1/2 as n + «)

in which case the bundle collapses immediately, or its initial strength may
exceed L* in which case a small amount of time will be required for collapse

#
to occur. Finally for L > L we obtain /o T 0O for 0 < y < 1 and

->
[ny+1] 'p
/o T (1) >0 as n > =,

n p

These gereral features carry over to many other practical examples of

the shape function. The assumptions listed in Section 6 are not restrictive.

Cl
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F{‘ y, Fraction Of Fibers That Have Failed

Figure 1. Graph to determine fraction of fibers that fail at time zero.
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